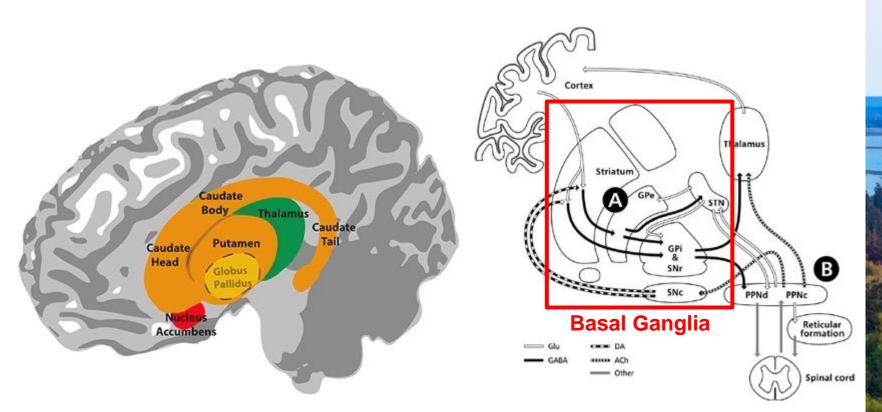


BALANCE AND FALLS IN INDIVIDUALS WITH PARKINSON'S DISEASE

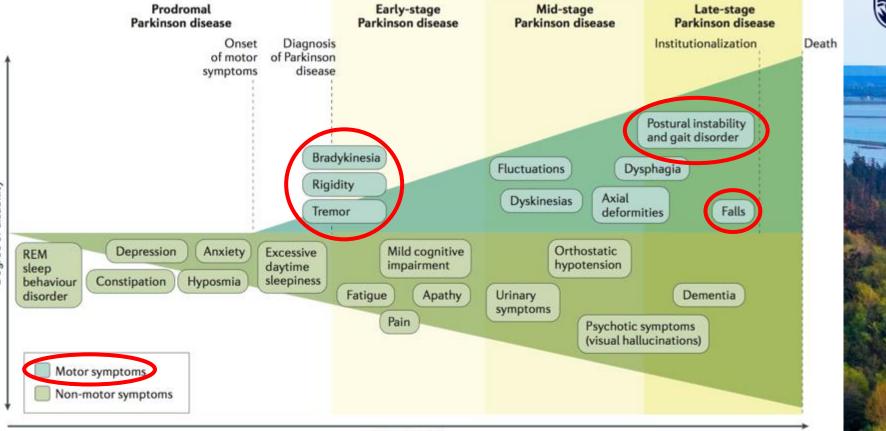
Eveline Pasman, M.D.

PhD Candidate Neural Control of Posture and Movement Lab


Origins of Balance Deficits and Falls Research Cluster School of Kinesiology, University of British Columbia

PRESENTATION OUTLINE

- Short overview of Parkinson's disease (PD)
- Falls in individuals with PD
- Measuring postural instability
- Effects of PD on postural control
- Fear and anxiety in individuals with PD
- Effects of fear and anxiety on postural control
 - In healthy participants
 - In individuals with PD
- New research on postural instability in PD


OVERVIEW OF PARKINSON'S DISEASE

Source: https://commons.wikimedia.org/wiki/File:Anatomy_of_the_basal_ganglia.jpg

Visser et al., Neuroscience, 2008

HALLMARK SYMPTOMS OF PD

Time (years)

Poewe et al., Nature reviews. Disease primers., 2017

Degree of disability

POSTURAL INSTABILITY IN PD

Hoehn and Yahr scale	Modified Hoehn and Yahr scale		
1: Unilateral involvement only usually with minimal or no functional disability	1.0: Unilateral involvement only		
•	1.5: Unilateral and axial involvement		
2: Bilateral or midline involvement without impairment of balance	2.0: Bilateral involvement without impairment of balance		
	2.5: Mild bilateral disease with recovery on pull test		
3: Bilateral disease: mild to moderate disability with impaired postural reflexes; physically independent ^a	3.0: Mild to moderate bilateral disease; some postural instability; physically independent		
4: Severely disabling disease; still able to walk or stand unassisted	4.0: Severe disability; still able to walk or stand unassisted		
5: Confinement to bed or wheelchair unless aided	5.0: Wheelchair bound or bedridden unless aided		

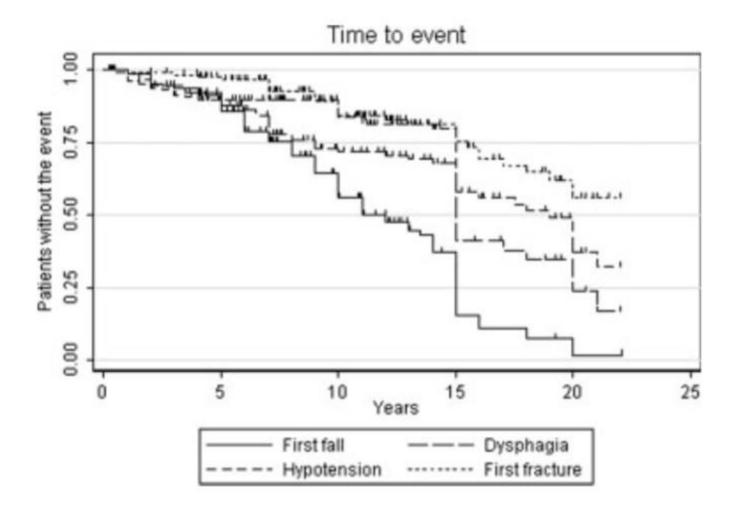
TABLE 1. Comparison between the original and modified Hoehn and Yahr scale

^aStage 3 is a summary of the authors' original, more narrative description.

Goetz et al., Movement Disorders, 2004

FREQUENCY OF FALLS IN PD

Falls occur in 35-90% (average 60.5%) of individuals with PD


- Of these individuals 18-65% (average 39%) fell recurrently
- Recurrent fallers fell between 5 and 68 times per year (Allen et al., Parkinson's disease, 2013)

Individuals with PD are 3 times more likely to fall than agematched controls

(Bloem et al., 2001)

LIKELIHOOD OF FALLS VS DISEASE DURATION

FALLS IN THE EARLY STAGES OF PD

Postural instability found in 34% of individuals with PD within 2 years of diagnosis

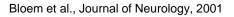
(Hely et al., Journal of Neurology, Neurosurgery, and Psychiatry, 1989)

Falls reported by 23% of individuals with PD within 5 years of their diagnosis

- 20% experienced a fall within 2 years of diagnosis
- 45% experienced a fall within 2 to 4 years of diagnosis

(Voss et al., Parkinsonism & Related Disorders, 2012)

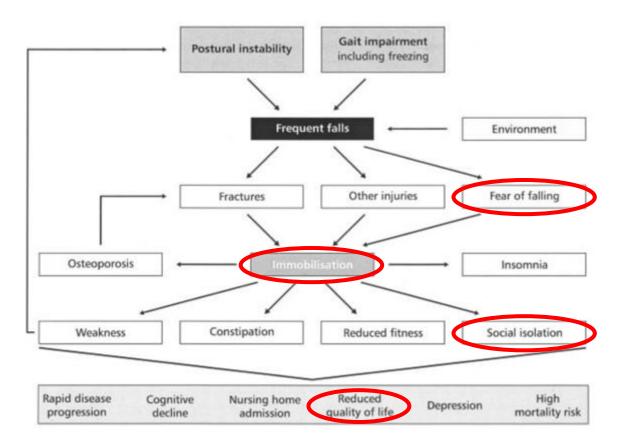
Therefore, falling is prevalent even in individuals with PD in the early stages of the disease



CAUSES OF FALLS IN PD

Table 2. Fall rates, circumstances and consequences of falls.							
	Patients (N = 59)	Controls (N = 55)	Significance				
Fall rates							
Time to first fall (months)	1.7 ± 1.7	2.5 ± 2.0	p = 0.35				
Fallers (≥1 fall)	30 (50.8%)	8 (14.5%)	p < 0.001				
Recurrent fallers (≥2 fall)	15 (25.4%)	2 (3.6%)	p = 0.001				
Characteristics a							
Falls indoors	124 (82.7%)	2 (20.0%)	p < 0.001				
Lach classification (25)							
Intrinsic falls	105 (70.0%)	4 (40.0%)					
Extrinsic falls	20 (13.3%)	5 (50.0%)	p = 0.02				
Non-bipedal falls	2 (1.3%)	0 (0.0%)					
Non-classifiable falls	23 (15.3%)	1 (10.0%)					
Maki classification (29)							
Base of support falls	21 (14.0%)	5 (50.0%)					
Center of mass falls	108 (72.0%)	4 (40.0%)	p = 0.02				
No obvious perturbation falls	8 (5.3%)	0 (0.0%)					
Non-classifiable falls	13 (8.7%)	1 (10.0%)					

Table 2. Fall rates, circumstances and consequences of falls.



NEGATIVE OUTCOMES OF FALLS IN PD

Falls are major sources of morbidity and mortality

- Injuries due to a fall occur in 24-39% of individuals with PD
- Individuals with PD have 51% greater risk for injury mortality

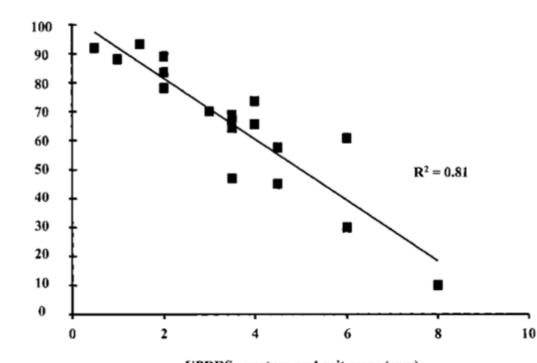
(Pickering et al., Movement Disorders, 2007; Allyson Jones et al., Parkinsonism & Related Disorders, 2012; Gazibara et al., Geriatric Nursing, 2014)

PREDICTORS OF FALL RISK IN PD

Mean ABC score (%)

Prior falls

57% of individuals with PD who had a history of falls in the past year fell within a 3-month follow-up period

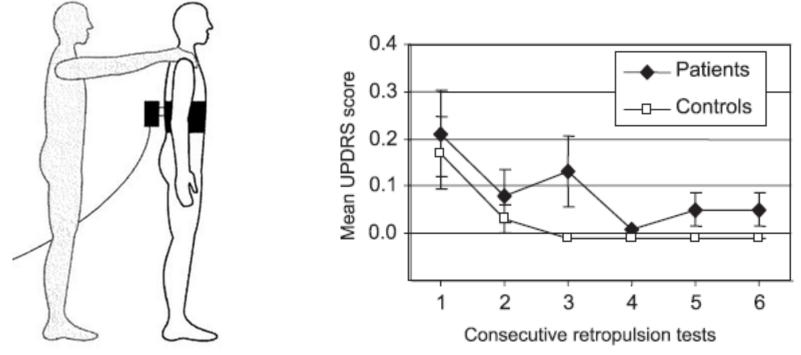

(Pickering et al., Movement Disorders, 2007)

Fear of falling

(Adkin et al., Movement Disorders, 2003; Mak & Pang, Journal of Neurology, 2009)

Postural instability

(Fasano et al., Movement Disorders, 2017)


UPDRS - posture and gait score (sum) Adkin et al., Movement Disorders, 2003

CLINICAL TESTS OF POSTURAL INSTABILITY

Retropulsion (or pull) test

• Integral part of the UPDRS clinical rating scale

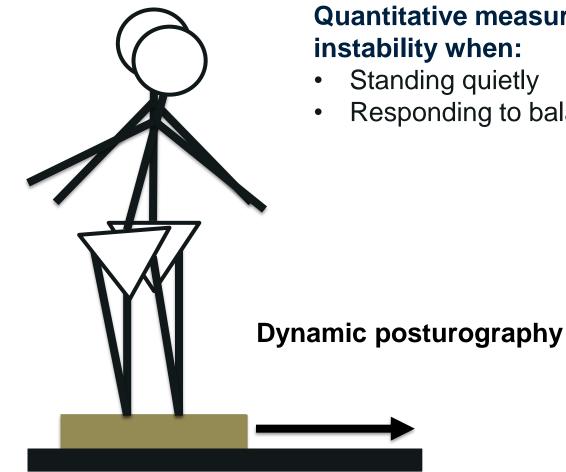
Bloem et al., Handbook of Clinical Neurophysiology, Ch 20, 2003

Bloem et al., Journal of Neurology, 2001

CLINICAL TESTS OF POSTURAL INSTABILITY

Functional balance measurement scales

- Community Balance and Mobility Scale
- Berg Balance Scale
- Tinetti Mobility Test

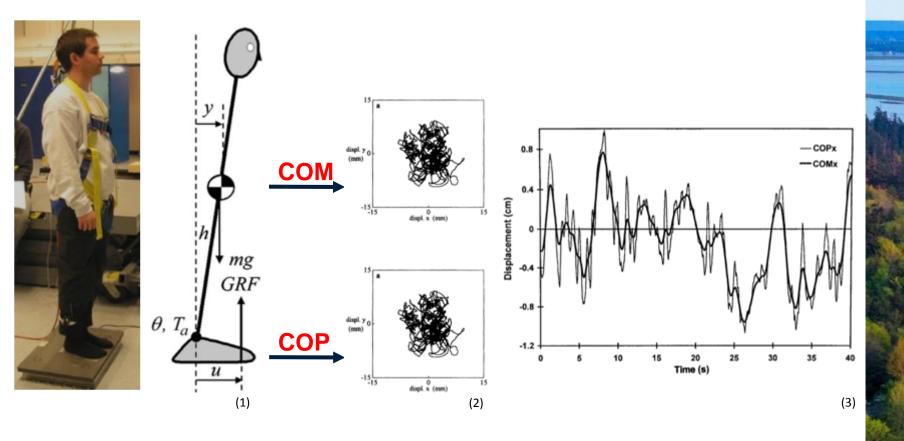

• BESTest and Mini-BESTest

I Biomechanical constraints	II Stability limits	III Anticipatory- transitions		
1. Base of Support	6. a. Lateral Lean L	9. Sit to Stand		
2. Alignment	b. Lateral Lean R	10. Rise to Toes		
3. Ankle Strength	c. Sitting Verticality L	11. Stand on One Leg (both right and left		
4. Hip Strength	d. Sitting Verticality R	12. Alternate Stair Touch		
5. Sit on Floor and Stand Up	7. Reach Forward 13. Standing Arm Raise			
	8. a. Reach L	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	b. Reach R			
IV Postural responses	V Sensory orientation	VI Dynamic gait		
14. In-place forward	19. a. Stance EO (firm surface)	21. Gait Natural		
15. In-place backward b. Stance EC (firm surface)		22. Change Speed		
16. Stepping forward c. Foam EO		23. Head Turns		
17. Stepping backward	d. Foam EC	24. Pivot Turns		
18. Lateral stepping (both right and left)	20. Incline EC 25. Obstacles			
		26. Get Up and Go		
		27. Cognitive Get Up and Go		

L: left; R: right; EO: eyes open; EC: eyes closed.

POSTUROGRAPHY

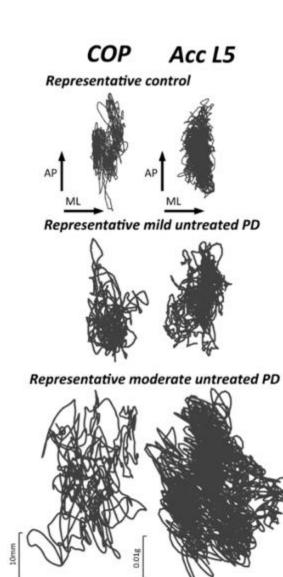
Quantitative measurement of postural instability when:

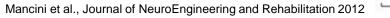

- Standing quietly
- Responding to balance perturbations

STATIC POSTUROGRAPHY

The measurement of body sway and how it is controlled during upright quiet standing

Bottaro et al., Human Movement Science, 2005
Collins & De Luca, Physical Review Letters, 1994
Winter et al., Journal of Neurophysiology, 1998

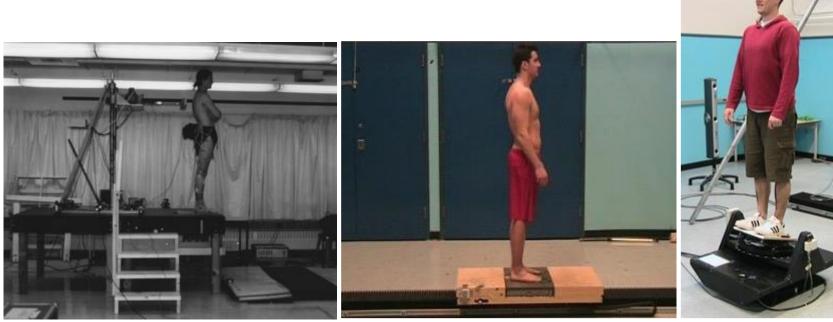

STATIC POSTUROGRAPHY – EFFECTS OF PD


Effects of PD on COP and COM*

- Increased amplitude of sway
- Increased frequency or velocity of sway

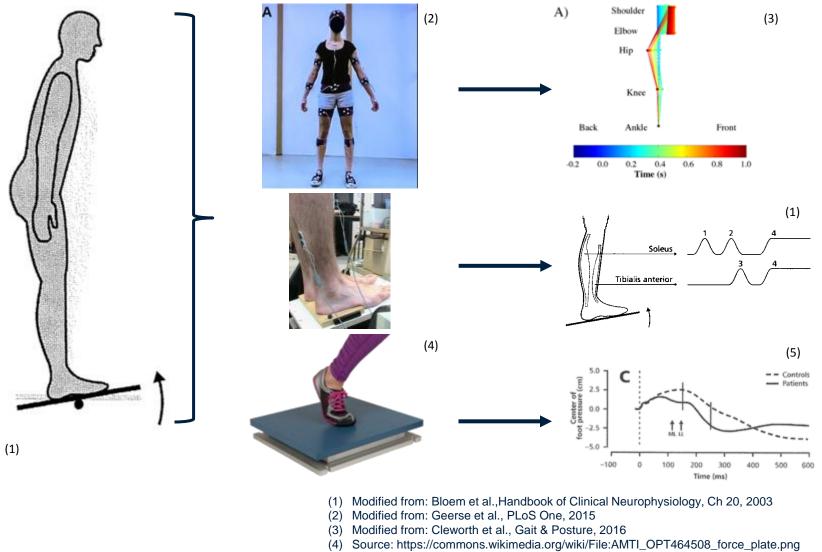
(Waterston et al., Journal of Neurology, Neurosurgery, and Psychiatry, 1993; Rocchi et al., Journal of Neurology, Neurosurgery, and Psychiatry, 2002; Viitasalo et al., Movement Disorders, 2002; Maurer et al., Brain, 2003; Mancini et al., Parkinsonism & Related Disorders, 2011; Mancini et al., Journal of NeuroEngineering and Rehabilitation 2012; Cruz et al., Neuroscience Letters, 2018)

*Based on studies with 60s trial duration and age-matched controls



DYNAMIC POSTUROGRAPHY

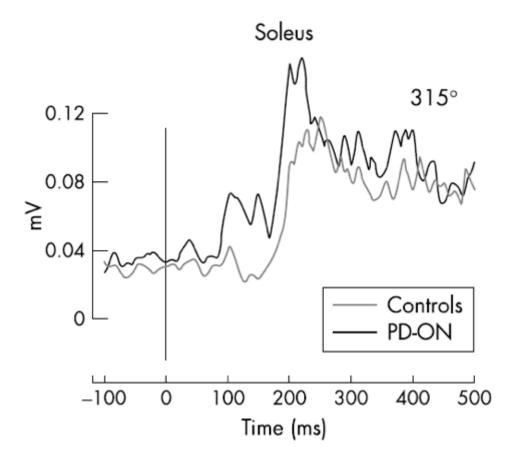
The measurement of dynamic postural responses to expected or unexpected external balance perturbations


Push or pull Brown & Frank, Gait & Posture, 1997

Translation

Rotation

DYNAMIC POSTUROGRAPHY

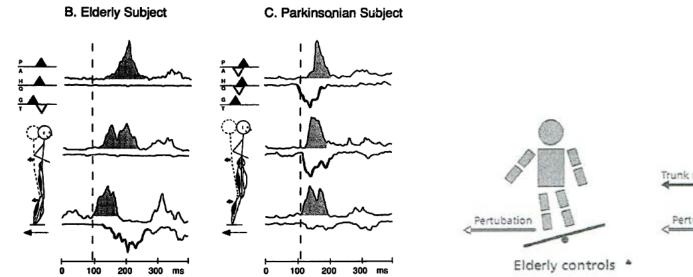


(5) Modified from: Bloem et al., Balance at All Times, Long-term timescale: Compensatory postural strategies in patients with longstanding balance impairment, 2001

DYNAMIC POSTUROGRAPHY – EFFECTS OF PD

Larger amplitude of postural responses

(Carpenter et al., Journal of Neurology, Neurosurgery, and Psychiatry, 2004: Dimitrova et al., Journal of Neurophysiology, 2004)


UBC


DYNAMIC POSTUROGRAPHY – EFFECTS OF PD

Co-contraction/stiffening

(Horak et al., Journal of the Neurological Sciences, 1992; Carpenter et al., Journal of Neurology, Neurosurgery, and Psychiatry, 2004)

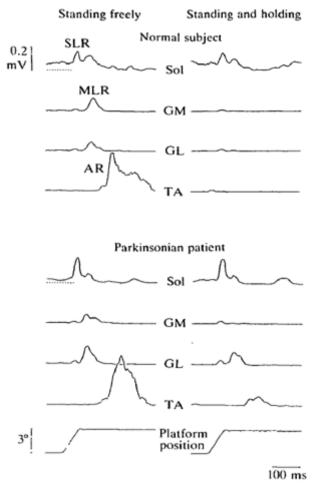
Modified from: Horak et al., Journal of the Neurological Sciences, 1992

Modified from: Bloem et al., Balance at All Times, Long-term timescale: Compensatory postural strategies in patients with longstanding balance impairment, 2001

DYNAMIC POSTUROGRAPHY – EFFECTS OF PD

Poor adaptability ('postural inflexibility')

•Between amplitudes

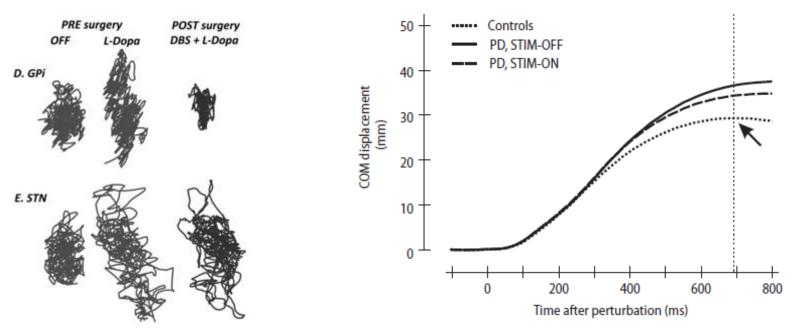

(Beckley et al., Electroencephalography and clinical Neurophysiology, 1993)

•Between types of perturbations

(Chong et al., Journal of the Neurological Sciences, 2000)

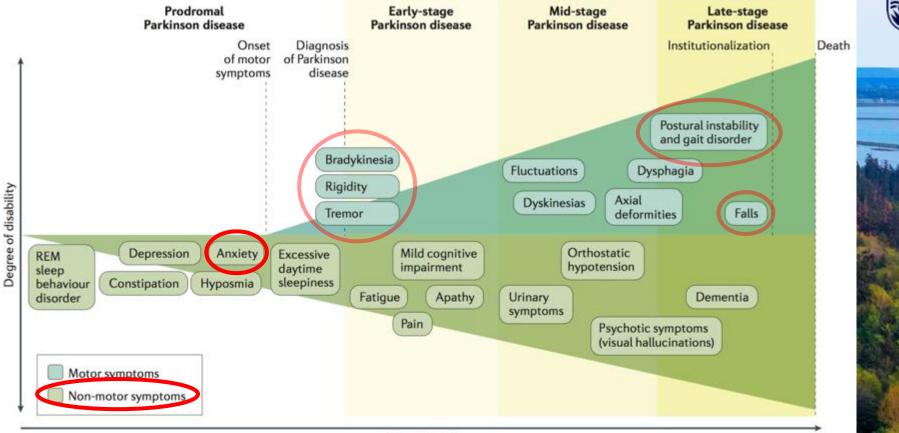
•Between postures

(Schieppati & Nardone, Brain, 1991; Horak et al., Journal of the Neurological Sciences, 1992; Chong et al., Journal of the Neurological Sciences, 2000)


Modified from: Schieppati & Nardone, Brain, 1991

EFFECTIVENESS OF TREATMENT

Postural instability not alleviated, and in some cases aggravated, by medication and surgical treatments for PD


(Bloem et al., Movement Disorders, 2004; Sethi et al., Movement Disorders, 2008; Visser et al., Journal of Neurology, 2008; St. George et al., Neurology, 2010)

Modified from: Schoneburg et al, Movement Disorders, 2013

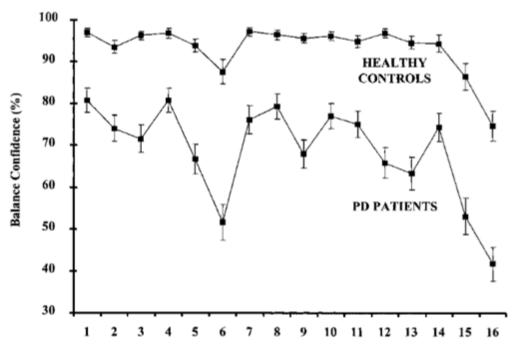
Visser et al., Journal of Neurology, 2008

NON-MOTOR SYMPTOMS OF PD

Time (years)

Poewe et al., Nature reviews. Disease primers., 2017

FREQUENCY OF FEAR/ANXIETY IN PD

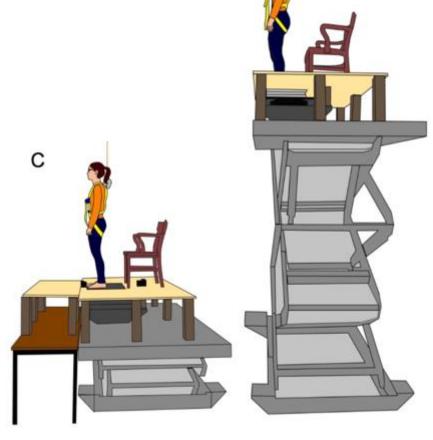

Anxiety affects up to 60% of individuals with PD

(Schrag & Taddei, International Review of Neurobiology, 2017; Schapiro et al., Nature Reviews. Neuroscience., 2017)

Fear of falling reported by 46% of individuals with PD

 Associated with limitations in daily activities, physical inactivity and recurrent future falls

(Bloem et al., Journal of Neurology, 2001; Mak et al., Journal of Neurology, 2009; Bryant et al., Journal of Ageing and Physical Activity, 2015)



Adkin et al., Movement Disorders, 2003

EFFECTS OF FEAR/ANXIETY ON BALANCE

Several methods used to investigate effects of fear/anxiety on postural control

- Social anxiety associated with clinical balance assessment
- Threat of perturbation
- Manipulation of support surface height

D

EFFECTS OF FEAR/ANXIETY ON BALANCE

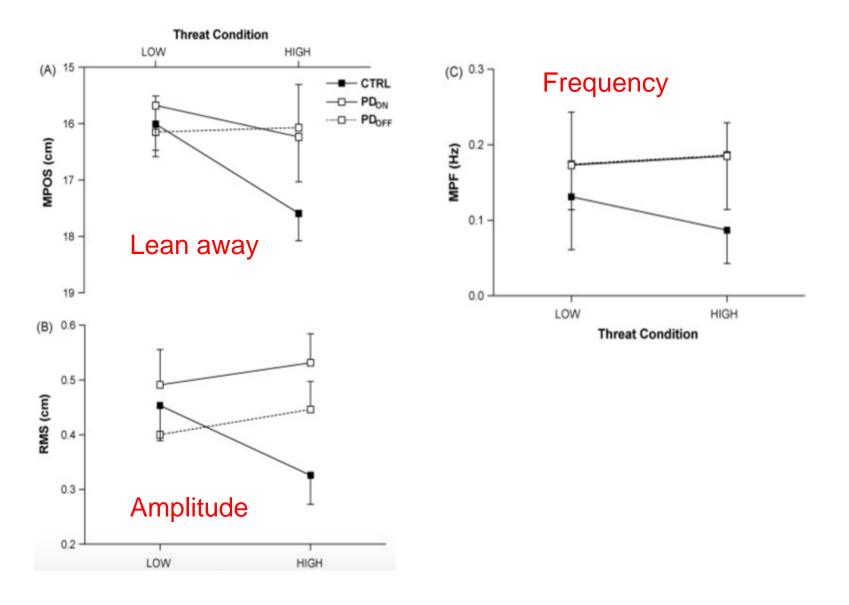
Participants standing at the edge of an elevated platform

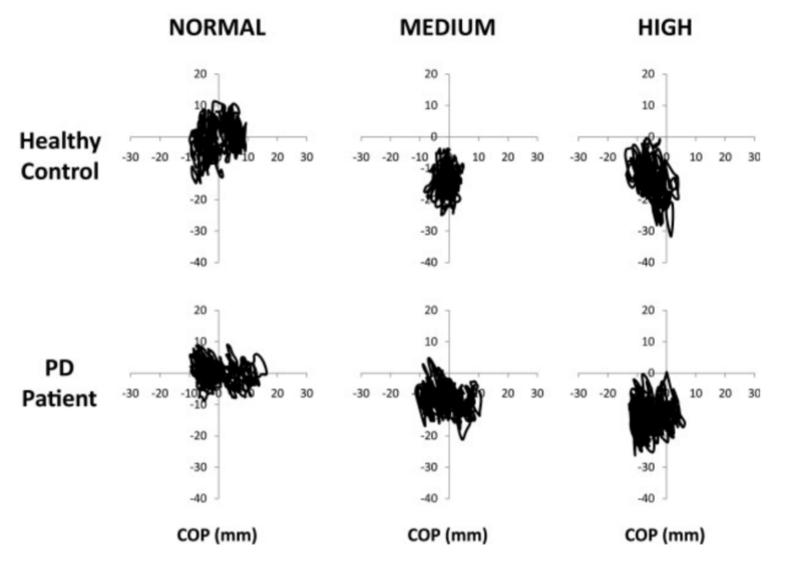
- Lean away from the platform edge
- Increase sway frequency
- Decrease sway amplitude

Study	Group	Maximum threat	Sampling duration	AP COP MP	AP COP MPF	AP COP RMS
Carpenter et al. (25)	14 YA	1.6 m	120 s	Posterior lean	Increased	Decreased
	13 OA	1.6 m	120 s	Posterior lean	Increased	Decreased
Hauck et al. (28)	31 YA	1.4 m	60 s	Posterior lean	Increased	Decreased
Davis et al. (29)	26 YA	3.2 m	60 s	Posterior lean	Increased	Decreased
Huffman et al. (30)	48 YA	3.2 m	60 s	Posterior lean	Increased	No change
Pasman et al. (39)	14 OA	1.6 m	120 s	Posterior lean	Increased	No change
Cleworth et al. (32)	18 YA	3.2 m	120 s	Posterior lean	Increased	Decreased
Zaback et al. (34)	82 YA	3.2 m	60 s	Posterior lean	Increased	Decreased
Cleworth et al. (35)	20 YA	3.2 m	60 s	Posterior lean	Increased	Decreased

Adkin & Carpenter, Frontiers in Neurology, 2019

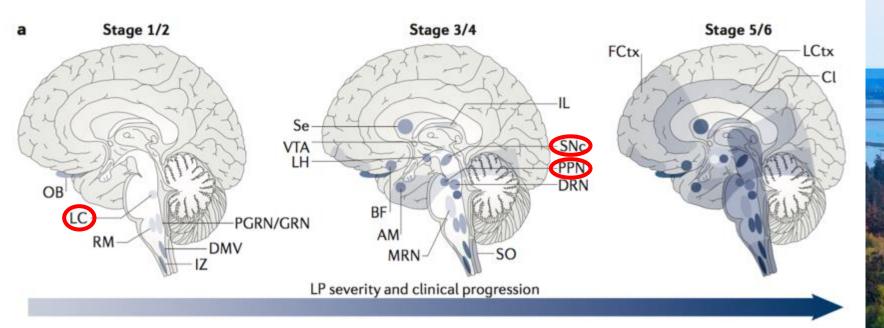
EFFECTS OF FEAR/ANXIETY ON BALANCE


Which comes first?


EFFECTS OF FEAR/ANXIETY ON BALANCE IN PD

UBC

EFFECTS OF FEAR/ANXIETY ON BALANCE IN PD



UBC

IS ONLY THE DOPAMINE SYSTEM AFFECTED?

Spread of Lewy pathology (LP) within different brain structures

LC: locus coeruleus (<u>norepinephrine</u>) PPN: pedunculopontine nucleus (<u>acetylcholine</u>) SNc: substantia nigra pars compacta (<u>dopamine</u>)

Modified from: Surmeier et al., Nature Reviews. Neuroscience, 201

FUNCTIONAL NEUROIMAGING

Investigating the brain regions involved in balance control using functional neuroimaging

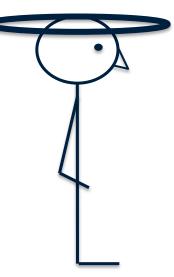
- Functional magnetic resonance imaging (fMRI)
- Positron emission tomography (PET)

Challenges to investigating 'balance' using fMRI and PET

- Most standard scanners require participants to lie horizontally
- Movement of the head must be strictly minimized

FUNCTIONAL NEUROIMAGING

Motor imagery (MI) of balance


- Variability MI ability
- Incomplete overlap of brain activity during MI compared to actual movement

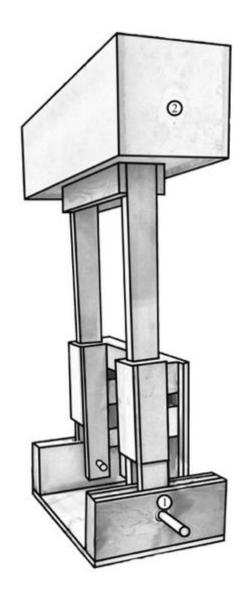
(McAvinue & Robertson, Journal of Mental Imagery, 2009; Saimpont et al., Journal of Motor Behavior, 2013; Saimpont et al., Brain Research, 2015; Kalicinski et al., Experimental Ageing Research, 2015)

Wearable PET scanner

- Poor temporal resolution
- Weight wearable PET device interfering with standing

(Bauer et al., Brain and Behavior, 2016; Melroy et al., Sensors (Basel), 2017)

BALANCE SIMULATOR

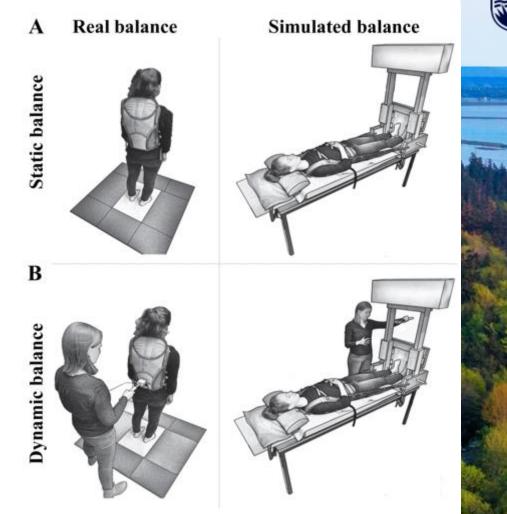

Free-standing inverted pendulum

Controlled by participants through activation of postural muscles around the ankle joint while supine

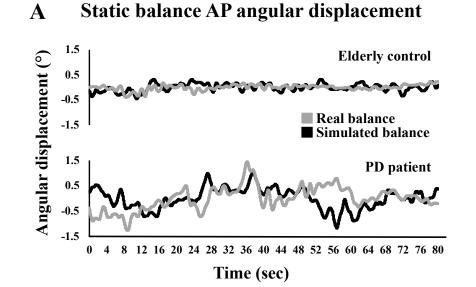
Easy for participants to use

- Healthy older adults
- Individuals with PD

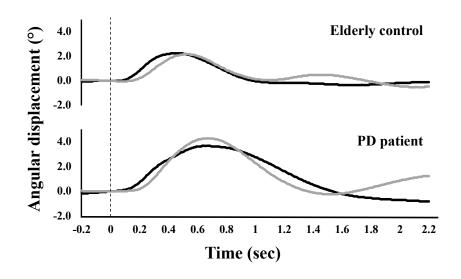
MRI compatible



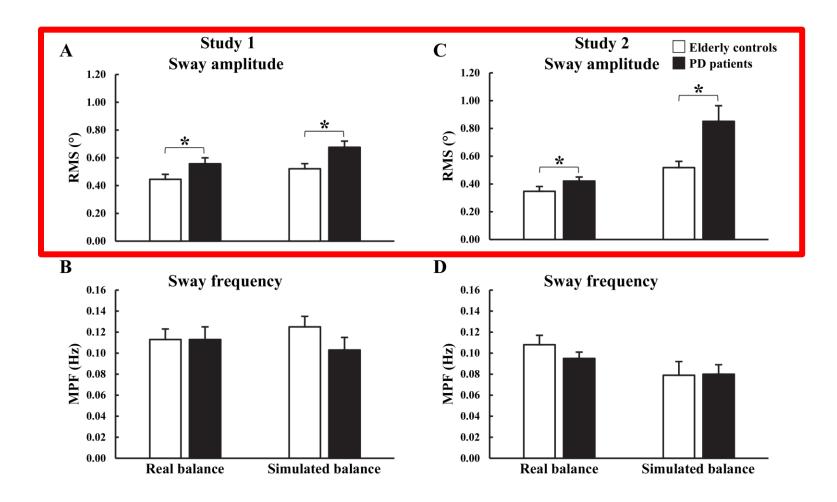
VALIDATION BALANCE SIMULATOR


Healthy older adults Individuals with PD

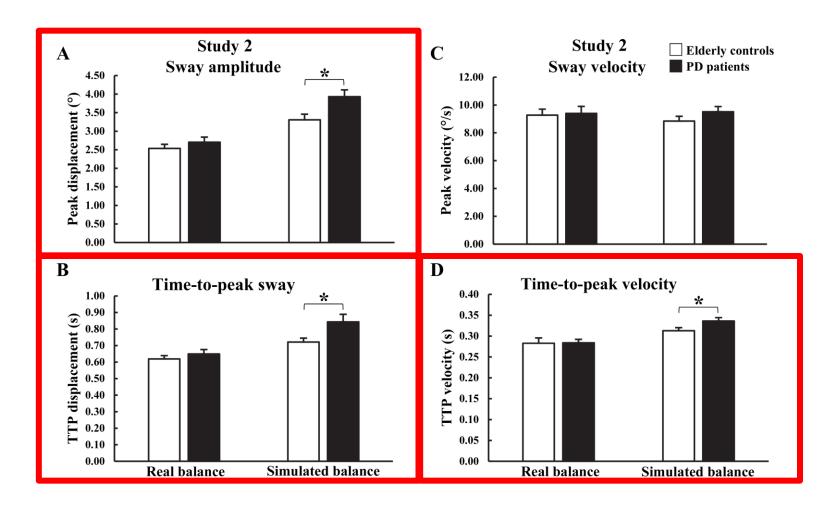
Recorded anterior-posterior angular displacements


- Body
- Balance simulator

SIMILAR SWAY BEHAVIOR REAL VS SIMULATED



Pasman et al., submitted


LARGER SWAY AMPLITUDE IN PD

LARGER PEAK SWAY IN PD IN THE SIMULATOR

Pasman et al., submitted

PRELIMINARILY RESULTS BALANCE SIMULATOR IN FMRI

BALANCE SIMULATOR IN THE MRI SCANNER

- 17 Healthy older adults 17 Individuals with PD
- Static balance task Dynamic balance task

Baseline conditions

- Rest (no task) with eyes closed
- Proprioceptive task

PRELIMINARY RESULTS BRAIN CONNECTIVITY

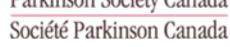
Healthy older adults Dynamic balance

PRELIMINARY RESULTS BRAIN CONNECTIVITY

Individuals with PD Dynamic balance

ACKNOWLEDGEMENTS

Dr. Mark G. Carpenter Dr. J. Timothy Inglis Dr. Martin. J. McKeown Dr. Bastiaan R. Bloem


(Past) members of the Neural Control of Posture and Movement Lab:

- Dr. Taylor Cleworth
- Dr. Brian Horslen
- Martin Zaback
- Dr. Ryan Peters
- Eddie Naranjo
- Shannon Lim
- Dr. Jordan Squair
- Dr. Chantelle Murnaghan
- Dr. Adam Campbell
- Monica McKeown
- Shayne Casey-Shaw
- Suzie Kimball
- Mia Li
- Rocio Hollman

Pacific Parkinson's Research Centre

Saurabh Garg

Funding: Image: Display a start of the start

If you are interested to participate in research, contact me at Eveline.Pasman@ubc.ca

For more information on our Balance Deficits & Falls Research Cluster Website: <u>https://balancefalls.ubc.ca/home</u> Twitter: @BalanceandFalls